Sums of Exponentials Approximations for the Kohlrausch Function
نویسندگان
چکیده
Abstract: The mathematical foundation of many real-world problems can be quite deep. Such a situation arises in the study of the flow and deformation (rheology) of viscoelastic materials such as naturally occurring and synthetic polymers. In order to advance polymer science and the efficient manufacture of synthetic polymers, it is necessary to recover information about the molecular structure within such materials. For the recovery of such information about a specific polymer, it is necessary to determine its relaxation modulus G(t) and its creep modulus J(t). They correspond to the kernels of the Boltzmann causal integral equation models of stress relaxation and strain accumulation experiments performed on viscoelastic solids and fluids. In order to guarantee that the structure of such models is consistent with the conservation of energy, both the relaxation modulus and the derivative of the creep modulus must be completely monotone (CM) functions.
منابع مشابه
Approximation of 1 / x by Exponential Sums in [ 1 , ∞ )
Approximations of 1/x by sums of exponentials are well studied for finite intervals. Here the error decreases like O(exp(−ck)) with the order k of the exponential sum. In this paper we investigate approximations of 1/x on the interval [1,∞). We prove estimates of the error by O(exp(−c√k)) and confirm this asymptotic estimate by numerical results. Numerical results lead to the conjecture that th...
متن کاملSome results of 2-periodic functions by Fourier sums in the space Lp(2)
In this paper, using the Steklov function, we introduce the generalized continuity modulus and denethe class of functions Wr;kp;' in the space Lp. For this class, we prove an analog of the estimates in [1]in the space Lp.
متن کاملSparse approximation of functions using sums of exponentials and AAK theory
We consider the problem of approximating functions by sums of few exponentials functions, either on an interval or on the positive half-axis. We study both continuous and discrete cases, i.e. when the function is replaced by a number of equidistant samples. Recently, an algorithm has been constructed by Beylkin and Monzón for the discrete case. We provide a theoretical framework for understandi...
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملNonharmonic Gabor Expansions
We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion. In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity, exactness and deficienc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011